
Spacecraft support
Version : 3 (build 060302)
Author : Vinka
Orbiter Version compatibility : 050216

Introduction
The spacecraft3.dll module gives support to spacecraft that can be configured through
initialisation file.
Most of the conventional spacecraft's will be supported by this module. You will be able to
create your own spacecraft without the need to write a specific DLL.

New features of this version
• This version is expected to be fully compatible with the previous version (spacecraft2)
• Support for basic virtual cockpit in 3D : can display 2 Orbiter standard MFD and HUD and

give a first person point of view.
• Extended aerodynamics parameters. Air foils can be fully specified. Missing control

surfaces were added
• Landing gear parameters. You can define surface friction coefficient and brake force
• RCS mode and Control Surface mode can be activated / deactivated
• Support for attachment : you can now define child and parent attachments. You can select a

parent attachment and attach a nearby object.
• Support for robotic arm : you can define a robotic arm by means of animation sequences

and one attachment.

New features or modified features are indicated with new in this documentation.
Obsolete features are indicated with obsolete

Limitation
• maximum of 10 spacecraft's in the same scenario.
• maximum of 16 thrusters exhaust rendering for main engines
• maximum of 16 thrusters exhaust rendering for hover engines
• maximum of 16 thrusters exhaust rendering for retro engines
• maximum of 64 thrusters exhaust rendering for attitude engines
• maximum of 10 payloads
• maximum of 16 docking ports
• no limitation of animation sequence (dynamically allocated)
• no limitation on components in an animation sequence (dynamically allocated)
• maximum of 1024 groups for all the animation sequences
• maximum of 16 attachment

Module Command keys :
 ‘j’ : jettison the payloads
Keys for animation sequence must be defined in the ini file (recognized keys are K, G,
left-shift 0,1,2, …, 9. In pause mode, left-shift 0,1 ...9 will pause then restart the motion.
Using left-shift and left-ctrl 0,1,2,...,9 will restart the motion in the opposite direction.

new'a' : Activate / Deactivate parent attachment management. A message will be displayed in
the screen bottom left when activated. The name of the selected attachment and the name of
the attached vessel (if any) is displayed. When active, cycle through attachment by using left
shift Key + NumPad 4 (previous) or NumPad 6 (next). Use left shift Key + NumPad 0 to
attach child (if any) / detach child (depending on the current status of the parent attachment)
Use left shift Key + NumPad 5 to toggle display of grapple points

new'space bar' : Activate / Deactivate robotic arm. A message will be displayed in the screen
bottom left when activated. The name of the selected robotic arm part is displayed. You can
cycle through the different parts by using left shift Key / NumPad 4 (previous) or NumPad 6
(next). Use left shift Key + NumPad 8 or left shift Key + NumPad 2 to move the part in one
direction or in the other direction. Releasing the key will stop motion. Use left shift Key +
NumPad 0 to grapple or release the target.

newLeftShift +NumPad * : activate/deactivate RCS mode
newLeftShift + NumPad . : activate/deactivate Control Surface mode

THE BEST WAY TO UNDERSTAND IT ALL, IS TO HAVE A LOOK AT THE
EXAMPLE DELIVERED.

Files needed :
Modules\spacecraft3.dll : the module implementing the generic spacecraft class
Config\spacecraft\spacecraft3.cfg : the class configuration file

Config\spacecraft\<vessel name>.ini : the ini file which define the parameters of the
spacecraft called “vessel name” in the scenario file (see below)

Scenario File format

The scenario file must define the ship as follow :
…

BEGIN SHIP
vessel name:spacecraft\spacecraft3
…

The spacecraft module will search a ini file with the name of the vessel defined in the scenario
file only in the config\spacecraft directory.

The following lines must be added to the scenario file

CONFIGURATION 0 (=launch, 1=in flight, 2=landed)
CURRENT_PAYLOAD (current payload not jettison yet)
SEQ 0 –2 0.0 (animation sequence 0 in state –2 (pause) at value 0.0)
SEQ 1 1 0.0 (animation sequence 1 in state 1 (run) at value 0.0)
RCS 0 (0=RCS deactivated, 1=RCS activated)
CTRL_SURFACE 1 (0=control surfaces locked at zero angle, 1=control surfaces active)

Initialisation File format
This file follow the format of the standard windows ini files. The definition of each parameter
is very short as this is very often a literal translation of the same parameter in Orbiter SDK.
You should read Orbiter SDK documentation to have more information about all these
parameters. The following sections and items can/must be defined :

[TEXTURE_LIST]
You must declare the texture files that will be used for engine exhaust rendering, this list is
preloaded in the dll.
• TEX_x : the texture name that will be used in one of the ENG_TEX field. x stands for 1, 2,

… up to 16.
Note that this texture library is static and common to all spacecraft vessels. This means that a
maximum of 16 textures can be used for all spacecraft vessels but different vessels may use
the same texture by using the same name.

[PARTICLESTREAM_x]
Definition of a particle stream. “x” stands for 1,2, … up to 13. Particle stream parameters are
those defined in the orbiter SDK (see it for details). You must define a particle stream section
before using it in the ini file.
Three particule streams are predefined and can be used. They are named “contrail”,”exhaust”
and “rcs” (they are based on the sample definition of Orbiter sample code).
• NAME : the name associated with the particle stream, this name will be used to associate

the particle stream with engines. Three default particle stream are already defined in the
dll : exhaust, contrail and rcs.

• SRCSIZE : see orbiter API doc for details
• SRCRATE : see orbiter API doc for details
• V0 : see orbiter API doc for details
• SRCSPREAD : see orbiter API doc for details
• LIFETIME : see orbiter API doc for details
• GROWTHRATE : see orbiter API doc for details
• ATMSLOWDOWN : see orbiter API doc for details
• LTYPE : see orbiter API doc for details. Possible values are EMISSIVE, DIFFUSE
• LEVELMAP : see orbiter API doc for details. Possible values are LVL_LIN, LVL_FLAT,

LVL_SQRT, LVL_PLIN, LVL_PSQRT

• LMIN : see orbiter API doc for details
• LMAX : see orbiter API doc for details
• ATMSMAP : see orbiter API doc for details. Possible values are ATM_FLAT,

ATM_PLIN, ATM_PLOG
• AMIN : see orbiter API doc for details
• AMAX : see orbiter API doc for details
• TEX : texture file name for particle stream rendering

Note that this particle stream library is static and common to all spacecraft vessels. This
means that a maximum of 13 particle streams can be used (+3 predefined) for all spacecraft
vessels but different vessels may use the same particle stream by using the same name.

[LIFT] obsolete
lift section is now obsolete because new atmospheric flight model is used.

[AERODYNAMICS]
• newMODEL : possible values are “shuttle”, “dglider” or “capsule”. If you know nothing at

aerodynamics, this is the only parameters that you must specify. All other parameters
related to aerodynamics will take default values according to the model chosen. For
“shuttle”, Orbiter default values given for space shuttle Atlantis will be used. For “dglider”,
Orbiter default values given for delta glider will be used. For “capsule”, another set of
default values are used. If you want to replace default values by a specific values, you must
specify one or more of the following parameters :

• VAIRFOIL_ATTACK : attack point (x,y,z) in vessel coordinates of the vertical air foil
• VAIRFOIL_CHORD : chord length of the vertical air foil
• VAIRFOIL_AREA : vertical air foil area
• VAIRFOIL_ASPECT : vertical air foil
• newVAIRFOIL_LIFT_1 (up to _32) : (aoa,cl,cm) lift profile for vertical air foil, the first

element (aoa) is the angle of attack and must be defined between -180° and +180°, the
second element (cl) is the lift coefficient, the third element is the moment coefficient

• newVAIRFOIL_EFFICIENCY : vertical air foil efficiency factor (b²/S where b is the wing
span and S the wing area)

• newVAIRFOIL_WAVE_DRAG : maximum drag coefficient in transonic
• newVAIRFOIL_CD0 : drag coefficient at 0 angle of attack
• HAIRFOIL_ATTACK : attack point (x,y,z) in vessel coordinates of the horizontal air foil
• HAIRFOIL_CHORD : chord length of the horizontal air foil
• HAIRFOIL_AREA : horizontal air foil area
• HAIRFOIL_ASPECT : horizontal air foil
• newHAIRFOIL_LIFT_1 (up to _32) : (beta,cl) lift profile for horizontal air foil, the first

element (beta) is the bank angle and must be defined between -180° and +180°, the second
element (cl) is the lift coefficient

• newHAIRFOIL_EFFICIENCY : horizontal air foil efficiency factor (b²/S where b is the
wing span and S the wing area)

• newHAIRFOIL_WAVE_DRAG : maximum drag coefficient in transonic
• newHAIRFOIL_CD0 : drag coefficient at 0° bank angle
• ELEVATOR_ATTACK : attack point of the elevator
• ELEVATOR_AREA : elevator control surface area
• ELEVATOR_LIFT : elevator maximum change in lift when fully oriented
• ELEVATOR_ANIM : sequence number for animation of elevator
• RUDDER_ATTACK : attack point of the rudder
• RUDDER_AREA : rudder control surface area

• RUDDER_LIFT : rudder maximum change in lift when fully oriented
• RUDDER_ANIM : sequence number for animation of rudder
• AILERON_ATTACK : attack point of the aileron
• AILERON_AREA : aileron control surface area
• AILERON_LIFT : aileron maximum change in lift when fully oriented
• AILERON_RIGHT_ANIM : sequence number for animation of the right aileron
• AILERON_LEFT_ANIM : sequence number for animation of the left aileron
• newELEVATOR_TRIM_ATTACK : attack point of the elevator trim
• newELEVATOR_TRIM_AREA : elevator trim control surface area
• newELEVATOR_TRIM_LIFT : elevator trim maximum change in lift when fully oriented
• newELEVATOR_TRIM_ANIM : sequence number for animation of elevator trim
• newRUDDER_TRIM_ATTACK : attack point of the rudder trim
• newRUDDER_TRIM_AREA : rudder trim control surface area
• newRUDDER_TRIM_LIFT : rudder trim maximum change in lift when fully oriented
• newRUDDER_TRIM_ANIM : sequence number for animation of rudder trim
• newFLAPS_ATTACK : attack point of the flaps
• newFLAPS_AREA : flaps control surface area
• newFLAPS_LIFT : flaps maximum change in lift when fully oriented
• newFLAPS_ANIM : sequence number for animation of flaps
• SPEEDBRAKE_ATTACK : speed brake attack point
• SPEEDBRAKE_DRAG : speed brake maximum change in drag when fully deployed
• SPEEDBRAKE_ANIM : sequence number for animation of speed brake

[CONFIG]
spacecraft configuration parameters section, most of these parameters correspond to the
definition given by Martin Schweiger in is documentation. Not all the parameters must be
defined, other parameters will get default values when not specified.
• MESHNAME="atlantis" : the mesh name to be loaded
• SIZE=19.6 : the vessel radius size (m). The sphere defined must enclosed the vessel

completely.
• EMPTY_MASS=104326 : the vessel empty mass (kg)
• FUEL_MASS=20000 : the vessel fuel mass (kg)
• MAIN_THRUST=53400 : the vessel main engine thrust (N)
• MAIN_TEX=texture name in the library to render main thrust
• MAIN_PSTREAM1=first particle stream name in the library to render main thrust
• MAIN_PSTREAM2=second particle stream name in the library to render main thrust
• RETRO_THRUST=0 : the vessel retro engine thrust (N)
• RETRO_TEX=texture name in the library to render retro thrust
• RETRO_PSTREAM1=first particle stream name in the library to render retro thrust
• RETRO_PSTREAM2=second particle stream name in the library to render retro thrust
• HOVER_THRUST=0 : the vessel hover engine thrust (N)
• HOVER_TEX=texture name in the library to render main thrust
• HOVER_PSTREAM1=first particle stream name in the library to render hover thrust
• HOVER_PSTREAM2=second particle stream name in the library to render hover thrust
• ATTITUDE_THRUST=7740 : the vessel attitude engine thrust (N), thrust is considered to

be applied by thrusters located at 1 meter from the rotation axis, you should adapt the
engine thrust according to the real radius.

• ATT_TEX=texture name in the library to render attitude thrust
• ATT_PSTREAM1=first particle stream name in the library to render attitude thrust
• ATT_PSTREAM2=second particle stream name in the library to render attitude thrust
• REENTRY_PSTREAM=particle stream name in the library to render atmospheric re-entry

• ISP=5000 : the fuel specific impulsion (N/kg/sec)
• PMI=(78.2,82.1,10.7) : the principal moment of inertia (kgm²)
• CW_Z_POS=0.2 : the drag coefficient on the z axis when the vessel is moving forward
• CW_Z_NEG=0.5 : the drag coefficient on the z axis when the vessel is moving backward
• CW_X=1.5 : the drag coefficient on the x axis
• CW_Y=1.5 : the drag coefficient on the y axis
• CROSS_SECTION=(234.8,389.1,68.2) : the cross section in x,y,z axis (m²)
• COG=8 : the center of gravity of the vessel above ground when landed (m)
• PITCH_MOMENT_SCALE=0.00001 : the pitch moment scale
• BANK_MOMENT_SCALE=0.00002 : the bank moment scale
• ROT_DRAG=(0.5,1.0,1.0) : the rotational drag
• WING_ASPECT=0.7 : obsolete
• WING_EFFECTIVENESS=2.5 : obsolete
• TRIM : the trim value
• LAUNCH_PT1=(1,0,0), LAUNCH_PT2=(-1,0,0), LAUNCH_PT3 = (0,0,1) : the

coordinates of the touchdown points in launch configuration
• LAND_PT1=(1,0,0), LAND_PT2=(-1,0,0), LAND_PT3 = (0,0,1) : the coordinates of the

touchdown points in landing configuration. If you want both launch and land to be the
same, just define LAND_PT1,2,3. The landing configuration is automatically selected after
launch when a altitude of 100 meter is reached.

• FOCUS=1 : specify which payload will get the focus when jettisoned, to keep the focus on
the mother craft specify –1. Payloads valid values start at 0 and goes to number of
payloads-1.

• VISIBLE=1 : specify if the internal mesh rendering must be done in cockpit view
• CAMERA=(0,0,0) : specify the position of the point of view in cockpit view (should

correspond to the cockpit position in the mesh). The default value will set the cockpit at the
front of vessel.

new[LANDING_GEAR]
• WHEEL=0.04 : the surface friction coefficient associated with the longitudinal axis when

wheels are fully deployed.
• BELLY=0.4 : the surface friction coefficient associated with the lateral axis and with

longitudinal axis when wheels are not fully deployed (belly landing)
• BRAKE=200000. : the maximum wheels brake force in Newton when wheels are fully

deployed. When wheels are not deployed, brake can't be used and value is set to 0.
• SEQ=-1 : the animation sequence associated with the landing gear. When an animation

sequence is defined for landing gear surface friction and brake force are modified when
wheels are fully deployed. The animation sequence value for fully deployed mode must be
1 (not 0). If there is no animation sequence associated, the parameters are set according to
normal landing mode (landing gear deployed).

[DOCK_0]
…
[DOCK_15]
docking ports list (maximum 16 docking ports per vessel)
• POS=(0,2.44,10.44) : the docking port position
• DIR=(0,1,0) : the docking port approach direction
• ROT=(0,0,-1) : the docking port longitudinal rotation alignment vector

 [EX_MAIN_0]
…
[EX_MAIN_15]
main engine exhaust rendering definition sections (as many section as engines rendering are
required)
• OFF=(-2.05,3.45,-14.2) : the offset of the rendering
• DIR=(-0.050, 0.099, -0.994) : the direction of the rendering
• LENGTH=4 : the length of the rendering at full thrust
• WIDTH=0.5 : the width of the rendering at full thrust

 [EX_RETRO_0]
…
[EX_RETRO_15]
 same as EX_MAIN but for retro engines

 [EX_HOVER_0]
…
[EX_HOVER_15]
 same as EX_MAIN but for hover engines

[EX_ATT_0]
…
[EX_ATT_63]
attitude engines exhaust rendering definition sections
• OFF=(0,1.6,17) : the offset of the rendering
• DIR=(0,1,0) : the direction of the rendering
• LENGTH=0.3 : the length of the rendering at full thrust
• WIDTH=0.3 : the width of the rendering at full thrust
• ROT_AXIS=X : the rotation axis (X, Y or Z)
• ROT_CW=1 : the rotation direction (0=CCW, 1=CW (clock wise)
• LIN_AXIS=Y : the translational axis (X, Y or Z)
• LIN_CW=1 : the translational direction (0=negative axis or 1= positive axis)
Note that the ROT_ parameters or the LIN_ parameters may be missing as the attitude engine
can only be used for translation or rotation respectively.

[ANIM_SEQ_0]
[ANIM_SEQ_1]
…
animation sequence definition sections, this corresponds to the definition of the ANIM_SEQ
given by Martin in the sdk documentation
• INIT_POS : the animation value between [0,1] which correspond to the position of the

mesh group as it is specified in the mesh file (default is 0). If you want to start the
simulation with a different position, this position must be specified in the scenario file
(.scn) and not in the ini file.

• KEY=3 : the keypad key that will start the animation sequence. Recognized keys are K
(usually used for payload bay open/close), G (for gear up/down), left-shift 0, 1, 2, …, 9

• DURATION=10 : the duration of the sequence
• REPEAT : repeat mode (0=no repeat (default), 1=repeat by restarting cycle (0->1;0->1;0-

>…), 2=repeat by reversing cycle (0->1->0->1->0->…)
In normal mode, the animation sequence will generate a value from 0.0 to 1.0 while in
running mode (1). The value will change in ‘duration’ seconds. Once the value 1.0 is reached,

the simulation will go in pause mode (-2). Restarting the animation by pressing a key will turn
the pause mode (-2) in running mode (-1). The value will now change from 1.0 to 0.0.
Pressing the key will in running mode will revert the running mode (1->-1 or –1->1). In the
scenario file you specify the sequence number, the running mode (1,2,-1,-2) and the initial
value between 0.0 and 1.0. The mesh design must always represent the moving parts in the
specified initial position. If you want to have the original mesh position at Orbiter start, you
should configure the scenario file with <seq num> 2 0.0. If you want the other extreme
position, you should configure the scenario file with <seq num> -2 1.0
• PAUSE : (default value is 0). Setting this value to 1 will indicate that in normal mode,

pressing a key will pause motion. Restarting of motion can be done in the direction 0->1 by
using left-shift + key and in the opposite direction (1->0) by using left-shift & left-ctrl +
key.

The same key can be used to start/stop one or more sequences (simultaneously).

[ANIM_COMP_0]
[ANIM_COMP_1]
...
animation component definition sections.

FOR ROTATION :
• SEQ=0 : the animation sequence containing this component
• GROUPS=91, 92, 93 : the mesh group list that must be animated
• RANGE=(0.0,1.0) : the range value when the animation takes place within the sequence

(between 0 and 1)
• TYPE=ROTATE : specify that the animation is a rotation
• ROT_PNT=(-2.8,1.35,0.0) : the point of rotation (one point where the axis of rotation

passes through it)
• ROT_AXIS=(0,0,1) : the rotation axis
• ANGLE=160. : the angle of rotation (negative value for rotation in other direction)
• PARENT= : the ANIM_COMP number of the parent if any. The parent must always be

declared before the child.
FOR TRANSLATION
• SEQ=3 : the animation sequence containing this component
• GROUPS=6 : the mesh group list that must be animated
• RANGE=(0.,1.) : the range value when the animation takes place within the sequence

(between 0 and 1)
• TYPE=TRANSLATE : specify that the animation is a translation
• SHIFT=(0,-0.8,0) : the translation value that is applied.
• PARENT= : the ANIM_COMP number of the parent if any. The parent must always be

declared before the child.
FOR SCALING
• SEQ=3 : the animation sequence containing this component
• GROUPS=6 : the mesh group list that must be animated
• RANGE=(0.,1.) : the range value when the animation takes place within the sequence

(between 0 and 1)
• TYPE=SCALE : specify that the animation is a scaling
• SCALE=(0.1,0.1,1) : the scale values that are applied.
• REF=(-0.340,-3.1855,0) : the reference point to apply the scaling (fixed point where the

mesh seems to be scaled around).

• PARENT= : the ANIM_COMP number of the parent if any. The parent must always be
declared before the child.

New
FOR ROBOTIC ARM (specific)
For the grapple of the robotic arm, you must define an animation component without
reference to mesh groups. The transformation will be applied to a triangle. You must defined
the 3 points coordinates by using :
• TIP_1=(-2.26,1.71,-6.5) : first point coordinates
• TIP_2=(-2.26,1.71,-7.5) : second point coordinates
• TIP_3=(-2.26,2.71,-6.5) : third point coordinates
These coordinates will be used to move dynamically the attachment position associated with
the grapple in accordance with the robotic arm motion. Except for the GROUPS parameter
that is replaced by TIP_1, TIP_2 and TIP_3, all other parameters of the animation component
must be specified.

Composition of movements :
the animation components are now managed with reference to parent components (fully
compliant with the Orbiter definition). This reference to parent is specially useful if you want
to use the robotic arm feature.

[PAYLOAD_0]
…
[PAYLOAD_9]
payloads definition sections

• MESHNAME=Carina : mesh name of payload. You can define up to 5 meshes for one
payload, they must be declared in the same string, with each mesh name separated by a ;
(semi-column). Ex: mesh1;mesh2

• OFF=(0,10,-5) : (x,y,z) vector position of payload mesh offset in launcher (meters). If you
have declared more than one mesh for the payload, you must declare the same number of
offset in the same order. Offset positions are separated by ; (semi-columns). Ex: (0,0,25);
(0,0,27)

• MASS=1200 : payload mass in kg
• MODULE=carina : module name to be called at vessel create. This is the config file name

of the vessel type of the payload.
• NAME : the name that will be given to the vessel at payload release time
• SPEED : translation speed for payload jettison relative to spacecraft (in m/s)
• ROT_SPEED : rotation speed for payload jettison relative to spacecraft (in rad/s)

[SOUND]
The sound section gives support to OrbiterSound version 3.0

• MAIN_THRUST : specify the sound file to be played for main thrust
• HOVER_THRUST : specify the sound file to be played for hover thrust
• RCS_THRUST_ATTACK : specify the sound file to be played for RCS thrust
• RCS_THRUST_SUSTAIN : specify the sound file to be played for RCS thrust
• AIR_CONDITIONING : specify the sound file to be played for air conditioning
• COCKPIT_AMBIENCE_1 : specify the sound file to be played for cockpit ambience
• COCKPIT_AMBIENCE_2 : specify the sound file to be played for cockpit ambience
• COCKPIT_AMBIENCE_3 : specify the sound file to be played for cockpit ambience
• COCKPIT_AMBIENCE_4 : specify the sound file to be played for cockpit ambience

• COCKPIT_AMBIENCE_5 : specify the sound file to be played for cockpit ambience
• COCKPIT_AMBIENCE_6 : specify the sound file to be played for cockpit ambience
• COCKPIT_AMBIENCE_7 : specify the sound file to be played for cockpit ambience
• COCKPIT_AMBIENCE_8 : specify the sound file to be played for cockpit ambience
• COCKPIT_AMBIENCE_9 : specify the sound file to be played for cockpit ambience

New
[VC]
This is for virtual cockpit mode
MESHNAME="atlantis": specify the mesh of the cockpit, if the cockpit mesh is inside the
vessel mesh, just put the same name as the one you have specified in the [config] section
MFD_LEFT=125 : mesh group where Orbiter standard left MFD will be drawn. See Orbiter
SDK documentation for restriction on this mesh group (must be a rectangle)
MFD_RIGHT=126 mesh group where Orbiter standard right MFD will be drawn.
HUD=127 : mesh group where Orbiter HUD will be displayed
HUD_SIZE=0.252 : screen size (in meter) for HUD display. See Orbiter SDK for details.
HUD_CENTER=(-0.5479,2.325,15.777) : coordinates of HUD center on the mesh. See
Orbiter SDK for details.

New
[PARENT_ATTACH_0]
[CHILD_ATTACH_0]
…
use [PARENT_ATTACH_i] to specify a parent attachment, use [CHILD_ATTACH_i] to
specify a child attachment. The total number of attachment (child and parent added) per
spacecraft is 16.
attachment management
• NAME=string : the name of the attachment as it will be displayed. For example 'cargo bay

front'. If omitted the name will be the attachment number
• POS=(x,y,z) : the position of the attachment in vessel coordinates
• DIR=(x,y,z) : the direction of the attachment (normalized vector)
• ROT=(x,y,z) : the orientation of the attachment (normalized vector, must be perpendicular

to DIR vector)
• LOOSE=<0|1> : specify if loose attachment allowed (1)
• ID=”XS : 8 characters string to specify an identification of the child attachment (this field

is only used with child attachment)
• RANGE=<value> : the maximum distance in meter between the parent attachment and the

child attachment to consider that attachment between both vessels is allowed (this field is
only used with parent attachment)

Note on displaying grapple points : this is an undocumented feature of Orbiter but it seems
that only child attachment with there ID name starting with a 'G' are displayed.

New
[ROBOTIC_ARM]
robotic arm definition. You can define up to 8 joints.
• JOINT_0_NAME="shoulder yaw" : name of first joint that will be displayed on screen

when this joint is selected
• JOINT_0_SEQ=5 : reference to associated animation sequence. This animation sequence

must be defined with parameters INIT_POS and DURATION. A KEY parameter is not
required as the joint will be manipulated with the NumPad (see module command keys
paragraph)

• JOINT_0_RANGE=(-120,200) : angular position of joint that will be displayed on screen
for information

• JOINT_1_NAME,JOINT_1_SEQ...JOINT_7_NAME,JOINT_7_SEQ : other joints
• GRAP_SEQ=10 : reference to associated animation sequence with grapple. This animation

sequence is associated with a special animation component (see ANIM_COMP definition)
• GRAP_ATTACH=3 : reference to associated attachment with grapple. This attachment

must be defined like the other attachments and must be a parent attachment.

Examples
The following examples can be downloaded with the spacecraft add-on, their purpose is to
illustrate the possibilities of spacecraft3.dll, they are probably more useful for developers than
for end users.
Animations
a space platform demonstrating various animations possibilities.
shift+0 : antenna rotation. The antenna is rotating permanently over 360° (repeat mode 1)
shift+1 : robotic arm activation. Demonstrate composition of movements (translation of the
base and rotations of the arms). The movement is permanently cycling from one end to the
other (repeat mode 2)
New
shift+ctrl+2 : solar panel deployment. Demonstrate composition of movements (rotations
only), shift+2 to fold, shift+ctrl+2 to unfold panels
shift+3 : inflatable structure. Demonstrate the use of the scale function and composition of
movements (translation and scaling).
shift+4 : rotation of the arms
Atlantis Final Approach
The Atlantis Space Shuttle in final approach at KSC. The new aerodynamic model is
implemented, use shift+ Numpad 1 to deploy air brake. Use F8 to change view to virtual
cockpit 3D
Atlantis
The space shuttle Atlantis in orbital configuration. The payload bay contains three small
payloads that can be jettison (J key). Various ejection speed (translation & rotation) are
demonstrated. The payload bay is commanded with ‘K’ key and the landing gear by ‘G’ key.
At second payload jettison, the focus change to the payload (as specified in ini file), use F3
and select sts-101 to return the focus on to the shuttle.
Atlantis – RMS
The space shuttle Atlantis in orbital configuration. The payload bay is opened with two small
payloads attached (use 'a' then left shift NumPad4/NumPad6 to cycle through attachment and
left shift NumPad0 to attach/detach payload). A third payload is already in space and the
robotic arm is deployed. (use 'space bar' then left shift NumPad4/NumPad6 to cycle through
joints, left shift NumPad2/Numpad8 to move joint, left shift NumPad0 to grapple /
ungrapple).
NewAtlantis – Hst
The space shuttle Atlantis in orbit with the Hubble Space Telescope in the payload bay. Use
the shuttle arm (see example above) to grapple Hubble, release Hubble from the shuttle and
deploy it in space. Hubble is also animated
Deltaglider final approach
The Deltaglider in final approach at KSC. The new aerodynamic model is implemented with
control surface animations. Use 'G' key to deploy landing gear, Use shift+Numpad 4 to deploy
air brake. Use F8 to change view to virtual cockpit 3D
Deltaglider landed
The Delta glider landed at the Cape.‘K’ key commands the nose cone, ‘G’ key commands the
landing gear, shift + Numpad 0 key commands the air lock, shift + Numpad 1 commands the
radiator, shift + Numpad 2 commands the escape ladder, shift + Numpad 3 commands the top
hatch,shift + Numpad 4 commands the air brake.
NewDeltaglider
The Delta glider in orbital configuration. See previous example for the command keys.
RCS thrusters rendering with particle stream has been added

Multiple docking
Two deltagliders docked to a station module with 2 docking ports. All three vessels are
defined from spacecraft.dll.
Russian Dolls
This example illustrates the possibility to define payloads composed of multiple meshes. Each
ship is carrying the smaller ones. Jettison the small ships then change the focus and jettison
again until all vessels are separated. You should end this scenario with 6 ships, all of class
spacecraft
Vertical take off Horizontal landing
The Delta glider landed vertically, ready for take off. Going over 100 m altitude will arm the
horizontal landing.

Distribution
The distribution is taking advantage of the orbiter support for sub-directories. no file will be
placed in the root directories. This should result in better classification and in no existing file
being replaced.

Base package (always required)
module\spacecraft3.dll : module implementation of the spacecraft vessel class
config\spacecraft\spacecraft3.cfg : spacecraft vessel class configuration file
add-on docs\spacecraft.pdf : this documentation file

All add-ons based on spacecraft3.dll may be distributed freely with this base package
include.

For developers
The source code can be obtained upon request.

Credits/Copyright
Space shuttle, DeltaGlider, Hst : from the original Orbiter package
Source code : all source code by Vinka inspired from the various sample code by Martin
Schweiger.
Thanks to all beta testers of this version.

Known bug
There is not much protection against wrong ini file therefore this will result in Orbiter crash.
My advice is to start from a working ini file and modify it gradually.

Support
Any questions, help, request or bug report to vinka@swing.be

What will come next
• Support for capsule atmospheric re-entry
• EVA

